(2021) Chemical Engineering Journal_Valorization of disposable COVID-19 mask through the thermo-chemical process
Jung S., Lee S., Dou X., Kwon E.E.
(Elsevier B.V.) Chemical Engineering Journal ISSN: 13858947 Vol.405 Issue. Article No.126658 DOI: 10.1016/j.cej.2020.126658
It becomes common to wear a disposable face mask to protect from coronavirus disease 19 (COVID-19) amid this pandemic. However, massive generations of contaminated face mask cause environmental concerns because current disposal processes (i.e., incineration and reclamation) for them release toxic chemicals. The disposable mask is made of different compounds, making it hard to be recycled. In this regard, this work suggests an environmentally benign disposal process, simultaneously achieving the production of valuable fuels from the face mask. To this end, CO2-assisted thermo-chemical process was conducted. The first part of this work determined the major chemical constituents of a disposable mask: polypropylene, polyethylene, nylon, and Fe. In the second part, pyrolysis study was employed to produce syngas and C1-2 hydrocarbons (HCs) from the disposable mask. To enhance syngas and C1-2 HCs formations, multi-stage pyrolysis was used for more C–C and C–H bonds scissions of the disposable mask. Catalytic pyrolysis over Ni/SiO2 further expedited H2 and CH4 formations due to its capability for dehydrogenation. In the presence of CO2, catalytic pyrolysis additionally produced CO, while pyrolysis in N2 did not produce it. Therefore, the thermo-chemical conversion of disposable face mask and CO2 could be an environmentally benign way to remove COVID-19 plastic waste, generating value-added products. © 2020 Elsevier B.V.
This work was also supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (NRF-2019H1D3A1A01070644 and NRF-2019R1A4A1027795).
0개 댓글